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Abstract. We analyze the queueing behavior of long-tailed traffic flows under the Generalized Processor
Sharing (GPS) discipline. We show a sharp dichotomy in qualitative behavior, depending on the relative
values of the weight parameters. For certain weight combinations, an individual flow with long-tailed traffic
characteristics is effectively served at a constant rate. The effective service rate may be interpreted as the
maximum average traffic rate for the flow to be stable, which is only influenced by the traffic characteristics
of the other flows through their average rates. In particular, the flow is essentially immune from excessive
activity of flows with ‘heavier’-tailed traffic characteristics. In many situations, the effective service rate is
simply the link rate reduced by the aggregate average rate of the other flows. This confirms that GPS-based
scheduling algorithms provide a potential mechanism for extracting significant multiplexing gains, while
isolating individual flows. For other weight combinations however, a flow may be strongly affected by the
activity of ‘heavier’-tailed flows, and may inherit their traffic characteristics, causing induced burstiness.
The stark contrast in qualitative behavior illustrates the crucial importance of the weight parameters.

Keywords: Generalized Processor Sharing, induced burstiness, long-tailed traffic, reduced-load equiva-
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1. Introduction

Measurements indicate that traffic in high-speed networks exhibits burstiness on a wide
range of time scales, manifesting itself in long-range dependence and self-similarity,
see, for instance, [32,39]. The occurrence of these phenomena is commonly attributed
to extreme variability and long-tailed characteristics in the underlying activity patterns
(connection times, file sizes, scene lengths), see, for instance, [6,25,43]. This has trig-
gered a strong interest in queueing models with long-tailed traffic characteristics.
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Although the presence of long-tailed traffic characteristics is widely acknowledged,
the practical implications for network performance and traffic engineering remain to
be fully resolved. For small buffer sizes and a large number of sources, the impact
of long-tailed traffic characteristics may not be as pronounced as found in studies for
infinite buffers, see [28,29,33,40]. For larger buffer sizes, flow control mechanisms play
a critical role in preventing long-tailed activity patterns from overwhelming the buffer
contents, see [4], although the end-to-end delay may still be affected.

Scheduling and priority mechanisms also play a major role in controlling the effect
of long-tailed traffic characteristics on network performance. The present paper specif-
ically examines the effectiveness of Generalized Processor Sharing (GPS) in isolating
long-tailed traffic flows. As a design paradigm, GPS is at the heart of commonly-used
scheduling algorithms for high-speed switches, such as Weighted Fair Queueing, see,
for instance, [37,38].

A basic approach in the analysis of long-tailed traffic phenomena is the use of
fluid models with long-tailed arrival processes (e.g., on/off sources with long-tailed
on-periods). Fluid models are closely related to the ordinary single-server queue, thus
bringing within reach the classical results on regularly-varying [24] or subexponen-
tial [36,42] behavior of the service and waiting-time distribution in the GI/G/1 queue.
Those results are immediately applicable in the case of a single long-tailed arrival stream,
see [16,22]. They are also of use when a single long-tailed stream is multiplexed with
exponential streams, see [17,31]. We refer to [20] for a comprehensive survey on fluid
queues with long-tailed arrival processes. See also [30] for an extensive list of references
on subexponential queueing models.

The impact of priority and scheduling mechanisms on long-tailed traffic phenom-
ena has received relatively little attention. Some recent studies have investigated the ef-
fect of the scheduling discipline on the waiting-time distribution in the classical M/G/1
queue, see, for instance, [3]. For FCFS, it is well known [24] that the waiting-time tail
is regularly varying of index 1 − ν iff the service time tail is regularly varying of index
−ν. For LCFS preemptive resume as well as for processor sharing, the waiting-time tail
turns out to be regularly varying of the same index as the service time tail, see [18,49],
although with different pre-factors. In the case of processor sharing with several cus-
tomer classes, Zwart [47] showed that the sojourn time distribution of a class-i customer
is regularly varying of index −νi iff the service time distribution of that class is regularly
varying of index −νi , regardless of the service time distributions of the other classes.
In contrast, for two customer classes with ordinary non-preemptive priority, the tail be-
havior of the waiting and sojourn time distributions is determined by the heaviest of the
(regularly-varying) service time distributions, see [1,19].

In the present paper, we consider the Generalized Processor Sharing (GPS) disci-
pline. GPS-based scheduling algorithms, such as weighted fair queueing, play a major
role in achieving differentiated quality-of-service in integrated-services networks. The
queueing analysis of GPS is extremely difficult. One of the earliest studies is [27]. In-
teresting partial results for exponential traffic models were obtained in [7,26,34,44,45].
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Here, we focus on non-exponential traffic models, extending the results of
[9,10,12]. We show that, for certain weight combinations, an individual flow with long-
tailed traffic characteristics is effectively served at a constant rate. The effective service
rate may be interpreted as the maximum average traffic rate for the flow to be stable,
which is only influenced by the traffic characteristics of the other flows through their
average rates. In particular, the flow is essentially immune from excessive activity of
flows with ‘heavier’-tailed traffic characteristics. In many situations, the effective ser-
vice rate is simply the link rate reduced by the aggregate average rate of the other flows.
This is strongly reminiscent of the reduced-load equivalence established by Agrawal
et al. [2]. For other weight combinations however, a flow may be strongly affected by
the activity of ‘heavier’-tailed flows, and may inherit their traffic characteristics, caus-
ing induced burstiness. In [11], qualitatively similar results were obtained for a closely
related model of two coupled processors. For that model however, transform techniques
were used, whereas in the present paper we will develop probabilistic lower and upper
bounds and prove that these asymptotically coincide.

The remainder of the paper is organized as follows. In section 2, we present a de-
tailed model description. In section 3, we consider a scenario where the traffic intensity
of each flow is smaller than its weight in the GPS scheme. We start by deriving lower
and upper bounds for the workload distribution of an individual flow. We show that the
bounds, although quite crude by themselves, agree in terms of tail behavior, resulting
in the exact workload asymptotics. Next, we consider the general situation where the
traffic intensity of a flow may be larger than its GPS weight. We start by discussing
some stability issues, and then introduce a stability-related notion which plays a crucial
role in the analysis. We distinguish between two cases, depending on whether a flow
may be affected by other flows or not. These cases are examined in sections 4 and 5,
respectively. In both cases, we establish bounds for the workload distribution of an indi-
vidual flow, which are now more complicated and rely on more refined GPS properties.
As before though, the bounds coincide as far as tail behavior is concerned, thus yielding
exact asymptotic results. In section 6, we make some concluding remarks.

2. Model description

Consider N traffic flows sharing a link of unit rate. Traffic from the flows is served
in accordance with the Generalized Processor Sharing (GPS) discipline, which operates
as follows. Flow i is assigned a weight φi , with

∑N
i=1 φi = 1. If all the flows are

backlogged at time t , then flow i is served at rate φi . If some of the flows are not
backlogged, however, then the excess capacity is redistributed among the backlogged
flows in proportion to their respective weights. We refer to [26] for a formal description
of the evolution of the backlog process.

Denote byAi(s, t) the amount of traffic generated by flow i during the time interval
(s, t]. We assume that the process Ai(s, t) is stationary. Denote by ρi the traffic intensity
of flow i as will be defined below in detail for the two traffic scenarios that we consider.
Denote by Vi(t) the backlog (workload) of flow i at time t . Let Vi be a stochastic
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variable having the limiting distribution of Vi(t) for t → ∞ (assuming it exists). In the
cases that we consider, the limiting distribution when it exists does not depend on the
initial state of the system. As we are primarily interested in studying Vi , we may thus
assume without loss of generality that the system is initially empty, i.e., Vj(0) = 0 for
all j = 1, . . . , N .

Define Bi(s, t) as the amount of service received by flow i during the time interval
(s, t]. Then the following identity relation holds for all 0 � s � t :

Vi(t) = Vi(s)+ Ai(s, t)− Bi(s, t). (1)

Denote by A(s, t) := ∑N
i=1 Ai(s, t) the total amount of traffic generated during (s, t].

Define ρ := ∑N
i=1 ρi as the total traffic intensity. Define V (t) := ∑N

i=1 Vi(t) as the total
workload at time t .

For any c � 0, denote by V c
i (t) := sup0�s�t{Ai(s, t) − c(t − s)} the workload

at time t in a queue with constant service rate c fed by flow i only (assuming V c
i (0) = 0),

see, for instance, [5]. For c > ρi , let Vc
i be a stochastic variable with as distribution the

limiting distribution of V c
i (t) for t → ∞. Define Bc

i (s, t) as the amount of service
received by flow i during (s, t] in a queue with service rate c. Similarly to the identity
relation above, for all 0 � s � t :

V c
i (t) = V c

i (s)+ Ai(s, t)− Bc
i (s, t). (2)

Denote by Pc
i the duration of the busy period associated with the workload process Vc

i .
We occasionally use the short-hand notation Pi when the service capacity c is clear from
the context.

Before describing the traffic model, we first introduce some additional notation.
For any two real functions g(·) and h(·), we use the notational convention

g(x) ∼ h(x) to denote limx→∞ g(x)/h(x) = 1, or equivalently, g(x) = h(x)(1 + o(1))
as x → ∞.

For any stochastic variable X with distribution function F(·), EX < ∞, de-
note by F r(·) the distribution function of the residual lifetime of X, i.e., F r(x)=
(1/EX)

∫ x
0 (1 − F(y)) dy, and by Xr a stochastic variable with distribution F r(·).

The classes of long-tailed, subexponential, regularly varying, and intermediately
regularly varying distributions are denoted with the symbols L, S , R, and IR, respec-
tively. The definitions of these classes may be found in [8].

We now describe the two traffic scenarios that we consider.

2.1. Instantaneous input

Here, a flow generates instantaneous traffic bursts according to a renewal process. The
interarrival times between bursts of flow i have distribution function Ui(·) with mean
1/λi . The burst sizes of flow i have distribution Si(·) with mean σi < ∞. Thus, the
traffic intensity of flow i is ρi = λiσi .

We now state some results which will play a crucial role in the analysis.
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Theorem 2.1 (Pakes [36]). If Sri (·) ∈ S , and ρi < c, then

P
{
Vc
i > x

} ∼ ρi

c − ρi
P
{
Sri > x

}
.

Theorem 2.2 (Zwart [48]). If Ui(·) is an exponential distribution, i.e., the arrival
process is Poisson, Si(·) ∈ IR, and ρi < c, then

P{Pi > x} ∼ c

c − ρi
P
{
Si > x(c − ρi)

}
.

In fact, the preceding theorem can be extended to non-Poisson arrival processes,
see [47]. In the analysis we will need a slight modification:

Theorem 2.3. If Ui(·) is an exponential distribution, Sri (·) ∈ IR, and ρi < c, then

P
{
Pr
i > x

} ∼ c

c − ρi
P
{
Sri > x(c − ρi)

}
.

Remark 2.1. Although theorem 2.3 is only a minor extension of theorem 2.2, the proof
(see [13]) is new and might be of independent interest. It directly uses theorem 2.1 to
derive the asymptotic behavior of the residual busy period. Note that if Si(·) ∈ IR, then
theorem 2.2 implies theorem 2.3. However, if we only assume Sri (·) ∈ IR, then we can-
not directly use theorem 2.2, since Sri (·) ∈ IR does not necessarily imply Si(·) ∈ IR.

2.2. Fluid input

Here, a flow generates traffic according to an on–off process, alternating between on- and
off-periods. The off-periods of flow i have distribution function Ui(·) with mean 1/λi .
The on-periods of flow i have distribution Si(·) with mean σi < ∞. While on, flow i

produces traffic at a constant rate ri , so the mean burst size is σiri . The fraction of time
that flow i is off is

pi = 1/λi
1/λi + σi

= 1

1 + λiσi
.

The traffic intensity of flow i is

ρi = (1 − pi)ri = λiσiri

1 + λiσi
.

We now state the analogues of theorems 2.1–2.3 in the case of on–off processes.

Theorem 2.4 (Jelenković and Lazar [31]). If Sri (·) ∈ S , and ρi < c < ri , then

P
{
Vc
i > x

} ∼ pi
ρi

c − ρi
P

{
Sri >

x

ri − c

}
.
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Theorem 2.5 (Boxma and Dumas [21], Zwart [48]). If Ui(·) is an exponential distrib-
ution, i.e., the off-periods are exponentially distributed, Si(·) ∈ IR, and ρi < c < ri ,
then

P{Pi > x} ∼ pi
c

c − ρi
P

{
Si >

x(c − ρi)

ri − ρi

}
.

In addition, the following minor extension of the preceding theorem holds:

Theorem 2.6. If Ui(·) is an exponential distribution, Sri (·) ∈ IR, and ρi < c < ri , then

P
{
Pr
i > x

} ∼ pi
c

c − ρi
P

{
Sri >

x(c − ρi)

ri − ρi

}
.

Remark 2.2. Theorems 2.5 and 2.6 follow directly from theorems 2.2 and 2.3 because of
a useful equivalence relation observed by Boxma and Dumas [21] and Zwart [46]. The
busy period in a fluid queue is equal in distribution to the busy period in a corresponding
G/G/1 queue scaled by a factor ri/(ri − ci). The interarrival times in the G/G/1 queue
are exactly the off-periods in the fluid queue, and the service times correspond to the net
input during the on-periods. Thus, with some minor abuse of notation, P{Pi > x} =
P{PG/G/1

i > x(ri − c)/ri} for all values of x, with UG/G/1
i (·) = Ui(·) and SG/G/1

i :=
(ri − c)Si .

From theorem 2.2, noting that c − ρ
M/G/1
i = (c − ρi)/pi and piri = ri − ρi ,

P

{
PM/G/1
i >

x(ri − c)

ri

}
∼ c

c − ρ
M/G/1
i

P

{
SM/G/1
i > x

(
c − ρ

M/G/1
i

)ri − c

ri

}

= pi
c

c − ρi
P

{
Si >

x(c − ρi)

ri − ρi

}
,

yielding theorem 2.5.
In [21] theorem 2.6 was essentially obtained in this manner from a weaker version

of [35, theorem 2.2] for the case Si(·) ∈ R. Similarly, theorem 2.6 for the residual busy
period can be directly obtained from theorem 2.3.

Alternatively, theorem 2.6 can be proved by mimicking the proof of theorem 2.3 as
provided in [13].

3. Reduced-load equivalence

3.1. Bounds

We first derive bounds for the workload distribution which we will use in the next sub-
section to analyze the tail behavior. We focus on a particular yet arbitrary flow i. The
bounds do not involve any specific assumptions regarding the traffic model. In particular,
the bounds apply for the two traffic scenarios described in sections 2.1 and 2.2.
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The bounds rely on the following two simple properties of the GPS discipline:

(i) it is work-conserving, i.e., it serves at the full link rate whenever any of the flows is
backlogged;

(ii) it guarantees minimum rates φ1, . . . , φN , i.e., it serves flow i at least at rate φi when-
ever flow i is backlogged.

From property (i),

V (t) = sup
0�s�t

{
A(s, t)− (t − s)

}
for all t � 0. (3)

From property (ii),

Vi(t) � V
φi
i (t) for all t � 0. (4)

In the remainder of the section, we make the following crucial assumption.

Assumption 3.1. The traffic intensities and weights satisfy ρi < φi for all i = 1, . . . , N .

Note that the above assumption ensures stability of the flows. For a formal stability
proof, we refer to [26].

We first present a lower bound for the workload distribution of flow i. For compact-
ness, define A−i (s, t) := A(s, t)−Ai(s, t) = ∑

j =i Aj (s, t) as the aggregate amount of
traffic generated by all flows other than i during the time interval (s, t]. Also, denote by
ρ−i := ρ − ρi = ∑

j =i ρj the aggregate traffic intensity of these flows. For any c � 0,
define Zc

−i(t) := sup0�s�t{c(t − s) − A−i (s, t)}. For c < ρ−i , let Zc
−i be a stochastic

variable having the limiting distribution of Zc
−i (t) for t → ∞.

Lemma 3.1 (Lower bound). For any δ > 0,

P{Vi > x} � P

{
V1−ρ−i+δ
i − Zρ−i−δ

−i −
∑
j =i

V
φj
j > x

}
. (5)

Proof. Using properties (3), (4) we obtain, for any θ ,

Vi(t)= V (t)−
∑
j =i

Vj (t)

�V (t)−
∑
j =i

V
φj
j (t)

= sup
0�s�t

{
A(s, t)− (t − s)

}−
∑
j =i

V
φj
j (t)

= sup
0�s�t

{
Ai(s, t)− (1 − θ)(t − s)+ A−i (s, t)− θ(t − s)

}−
∑
j =i

V
φj
j (t)
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� sup
0�s�t

{
Ai(s, t)− (1 − θ)(t − s)

}+ inf
0�s�t

{
A−i (s, t)− θ(t − s)

}−
∑
j =i

V
φj
j (t)

= sup
0�s�t

{
Ai(s, t)− (1 − θ)(t − s)

}− sup
0�s�t

{
θ(t − s)− A−i(s, t)

}−
∑
j =i

V
φj
j (t)

= V 1−θ
i (t)− Zθ

−i (t)−
∑
j =i

V
φj
j (t) for all t � 0.

In particular, taking θ = ρ−i − δ, we have

Vi(t) � V
1−ρ−i+δ
i (t)− Z

ρ−i−δ
−i (t)−

∑
j =i

V
φj
j (t) for all t � 0.

Thus, in the stationary regime (5) holds. �

We now provide an upper bound for the workload distribution of flow i. For any
c � 0, define V c

−i(t) := sup0�s�t{A−i (s, t) − c(t − s)} as the workload at time t in a
queue with constant service rate c fed by all flows other than i. For c > ρ−i , let Vc

−i
be a stochastic variable having the limiting distribution of V c

−i(t) for t → ∞.

Lemma 3.2 (Upper bound). For any δ > 0

P{Vi > x} � P
{
Vφi
i > x,V1−ρ−i−δ

i + Vρ−i+δ
−i > x

}
. (6)

Proof. Using property (3), we have, for any θ ,

Vi(t)� V (t)

= sup
0�s�t

{
A(s, t)− (t − s)

}
= sup

0�s�t

{
Ai(s, t)− (1 − θ)(t − s)+ A−i (s, t)− θ(t − s)

}
� sup

0�s�t

{
Ai(s, t)− (1 − θ)(t − s)

}+ sup
0�s�t

{
A−i (s, t)− θ(t − s)

}
= V 1−θ

i (t)+ V θ
−i (t) for all t � 0.

Invoking property (4), and taking θ = ρ−i + δ, we obtain

Vi(t) � min
{
V
φi
i (t), V

1−ρ−i−δ
i (t)+ V

ρ−i+δ
−i (t)

}
for all t � 0.

Thus, in the stationary regime (6) holds. �

3.2. Asymptotic behavior

We now use the bounds from the previous subsection to determine the tail distribution
of the workload. Denote by ci := 1 − ρ−i = 1 − ∑

j =i ρj the link rate reduced by
the aggregate average rate of all flows other than i. We consider a specific flow i which
satisfies the following three properties for c = ci .
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Property 3.1. P{Vc
i > x} ∈ L, i.e.,

lim
x→∞

P{Vc
i > x − y}

P{Vc
i > x} = 1, for all real y.

Property 3.2. For any θ > 0,

lim inf
x→∞

P{Vc+θ
i > x}

P{Vc
i > x} = Fc

i (θ),

with limθ↓0 F
c
i (θ) = 1.

Property 3.3. For any 0 < θ < c − ρi ,

lim sup
x→∞

P{Vc−θ
i > x}

P{Vc
i > x} = Gc

i (θ) < ∞,

with limθ↓0 G
c
i (θ) = 1.

According to theorem 2.1, in case of instantaneous input, flow i satisfies proper-
ties 3.1–3.3 for any c > ρi if Sri (·) ∈ S .

According to theorem 2.4, in case of fluid input, flow i satisfies property 3.1 for
any ri > c > ρi if Sri (·) ∈ S , and properties 3.2 and 3.3 if Sri (·) ∈ IR.

We now give the main result of this section.

Theorem 3.1. Consider a flow i which satisfies properties 3.1–3.3 for c = ci . If as-
sumption 3.1 holds, then

P{Vi > x} ∼ P
{
Vci
i > x

}
.

Proof (Lower bound). From lemma 3.1, using independence, for any δ > 0 and y,

P{Vi > x} � P

{
Vci+δ
i > x + y,Zρ−i−δ

−i +
∑
j =i

V
φj
j � y

}

= P
{
Vci+δ
i > x + y

}
P

{
Zρ−i−δ

−i +
∑
j =i

V
φj
j � y

}
.

Thus

P{Vi > x}
P{Vci

i > x} � P{Vci+δ
i > x + y}

P{Vci
i > x + y}

P{Vci
i > x + y}

P{Vci
i > x} P

{
Zρ−i−δ

−i +
∑
j =i

V
φj
j � y

}
.

Using the fact that P{Vci
i > x} satisfies properties 3.1 and 3.2,

lim inf
x→∞

P{Vi > x}
P{Vci

i > x} � F
ci
i (δ)P

{
Zρ−i−δ

−i +
∑
j =i

V
φj
j � y

}
.



282 S. BORST ET AL.

Letting y → ∞, and then δ ↓ 0, we have

lim inf
x→∞

P{Vi > x}
P{Vci

i > x} � 1.

(Upper bound). From lemma 3.2, using independence, for any 0 < δ < 1 − ρ

and y,

P{Vi > x} � P
{
Vφi
i > x,Vci−δ

i > x − y or Vρ−i+δ
−i > y

}
� P

{
Vci−δ
i > x − y

} + P
{
Vφi
i > x,Vρ−i+δ

−i > y
}

= P
{
Vci−δ
i > x − y

} + P
{
Vφi
i > x

}
P
{
Vρ−i+δ

−i > y
}
.

Thus

P{Vi > x}
P{Vci

i > x} � P{Vci−δ
i > x − y}

P{Vci
i > x − y}

P{Vci
i > x − y}

P{Vci
i > x} + P{Vφi

i > x}
P{Vci

i > x} P
{
Vρ−i+δ

−i > y
}
.

Using the fact that P{Vci
i > x} satisfies properties 3.1 and 3.3,

lim sup
x→∞

P{Vi > x}
P{Vci

i > x} � G
ci
i (δ)+G

ci
i (ci − φi)P

{
Vρ−i+δ

−i > y
}
.

Letting y → ∞, and then δ ↓ 0, we obtain

lim sup
x→∞

P{Vi > x}
P{Vci

i > x} � 1. �

Theorem 3.1 states that the workload of an individual flow i (with long-tailed traffic
characteristics) is asymptotically equivalent to that in an isolated system. In the isolated
system, flow i is served at a constant rate, which is equal to the link rate reduced by
the aggregate average rate of all other flows. The result suggests that the most likely
way for flow i to build a large queue is that the flow itself generates a large burst, or
experiences a long on-period, while all other flows show roughly average behavior, each
flow j consuming a fraction ρj of the link rate. During that period, flow i then receives
service approximately at rate ci = 1 −∑

j =i ρj .
Thus, asymptotically, the workload of flow i is only affected by the traffic charac-

teristics of the other flows through their aggregate average rate. In particular, flow i

is essentially immune from excessive activity of other flows, even when those have
‘heavier’-tailed traffic characteristics.

The result is reminiscent of the ‘reduced-load equivalence’ established by Agrawal
et al. [2] and a result derived in [31] for multiplexing exponential with subexponential
flows. In these scenarios, the total workload is asymptotically equivalent to that in a
reduced system. The reduced system consists of a single dominant flow i served at the
link rate reduced by the aggregate average rate of all other flows. However, these results
do require bounding conditions on the variability of the other flows. Here, such condi-
tions are not needed because of the properties of the GPS discipline. In fact, we have
only used the following two properties of the GPS discipline in establishing theorem 3.1:
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(i) it is work-conserving; (ii) it guarantees minimum rates φ1, . . . , φN . Thus, the result
does not rely on the specific way in which excess capacity is redistributed in GPS, but
holds for any rate sharing algorithm with the above two properties. Also, the workload
is not significantly influenced by the exact values of the GPS weights (as long as they
are larger than the average flow rates as stipulated in assumption 3.1).

Now suppose each of the flows were served in isolation. Then the required service
capacity to achieve similar tail behavior is

N∑
i=1

ci =
N∑
i=1

(
1 −

∑
j =i

ρj

)
=

N∑
i=1

(1 − ρ + ρi) = 1 + (N − 1)(1 − ρ).

The latter quantity may typically be expected to be substantially larger than 1. This
confirms that GPS-based scheduling algorithms provide an effective mechanism for ex-
tracting significant multiplexing gains, while isolating indvidual flows.

To conclude the section, we briefly discuss the significance of assumption 3.1. The
assumption that ρi < φi for all i = 1, . . . , N implies two crucial properties:

(i) flow i is always guaranteed to receive service at a stable rate, even when other flows
generate large bursts or experience long on-periods;

(ii) when flow i generates a large burst, or experiences a long on-period, and thus builds
up a large queue, all other flows j continue to be served at a stable rate, demanding
a fraction ρj of the link rate.

If assumption 3.1 is relaxed, then two complicating situations may arise: (i) when
other flows generate large bursts or experience long on-periods, flow i may not receive
service at a stable rate, and thus build up a large queue; (ii) when flow i generates a large
burst, or experiences a long on-period, not all other flows j may continue to be served at
a stable rate, so some may consume less than a fraction ρj of the link rate.

In scenario (i), the tail behavior of flow i may potentially be affected by other flows
with ‘heavier’-tailed traffic characteristics, which drastically complicates the analysis.
In case (ii), precisely what rate the other flows will get, depends on the exact values
of the GPS weights (or the detailed mechanics of the rate sharing algorithm in general).
We will examine these scenarios in detail in the next sections when we relax assump-
tion 3.1.

4. Generalized reduced-load equivalence

4.1. Stability issues

We now relax the assumption that the traffic intensities and weights satisfy ρi < φi
for all i = 1, . . . , N , so that stability of the flows is not automatically ensured. In
case

∑N
i=1 ρi < 1, all flows will remain stable, because the GPS discipline is work-

conserving. However, the scenario
∑N

i=1 ρi > 1 may occur as well now. In that case,
at least one of the flows will be unstable, while others may still be stable.
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We now identify which flows are stable and which ones are unstable. To avoid
technical subtleties, flow i is considered ‘stable’ if its mean service rate is ρi , see also
remark 4.1 below. For ease of presentation, we assume the flows are indexed such that

ρ1

φ1
� · · · � ρN

φN
.

Lemma 4.1. With the above ordering, the set of stable flows is S∗ = {1, . . . , K∗}, with

K∗ = max
k=1,...,N

{
k:

ρk

φk
�

1 −∑k−1
j=1 ρj∑N

j=k φj

}
.

Proof. See appendix A. �

It may be verified that K∗ = N (i.e. all the flows receive a stable service rate) iff∑N
i=1 ρi � 1. By definition, each of the stable flows i ∈ S∗ receives a mean service

rate ρi . Each of the unstable flows i /∈ S∗ receives a mean service rate φiR < ρi , with

R = 1∑
j /∈S∗ φj

(
1 −

∑
j∈S∗

ρj

)
.

To understand the above formula, notice that the stable flows consume an average aggre-
gate rate

∑
j∈S∗ ρj , leaving an average rate 1 −∑

j∈S∗ ρj for the unstable flows, which
is shared in proportion to the weights φi .

We now introduce a stability-related notion which will play a fundamental role in
the analysis. Define γiE as the mean rate at which flow i would receive service if the
flows j ∈ E were to continuously claim their full share of the link rate according to the
assigned weights φj (while the remaining flows j /∈ E still acted ‘normally’). (With
minor abuse of notation we write γij for γi{j} and abbreviate γii to γi .) Now observe that
the flows j ∈ E would in fact show such greedy behavior if they were unstable (which
they need not be in reality). So we may determine γiE by forcing the flows j ∈ E into the
set of unstable flows, and then apply lemma 4.1. The set of flows which would receive a
stable service rate if the flows j ∈ E were to continuously claim their full share of the
link rate, is then SE := {1, . . . , K∗

E} \ E, with

K∗
E = max

k=1,...,N

{
k : ρk

φk
�

1 −∑k−1
j=1 ρj I{j /∈E}∑N

j=k φj I{j /∈E} +∑
j∈E φj

}
.

Thus, γiE = ρi for all i ∈ SE, and γiE = φiRE < ρi for all i /∈ SE , with

RE = 1∑
j /∈SE φj

(
1 −

∑
j∈SE

ρj

)
.

To explain the above formula, observe that the flows j ∈ SE by definition receive an
average aggregate rate

∑
j∈SE ρj , leaving an average rate 1 − ∑

j∈SE ρj for the flows
j /∈ SE , which is shared in proportion to the weights φi .
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Remark 4.1. For later purposes, we find it convenient to label flow i as ‘stable’ if the
mean service rate is ρi . In fact, the latter condition is necessary for stability in the usual
sense, but not entirely sufficient. A sufficient condition is ρi < γi . Indeed, if the queue
of flow i never emptied, then it would receive a mean service rate γi , so that γi is the
critical mean rate for stability.

4.2. Bounds

We first derive bounds for the workload distribution which we will use in the next sub-
section to analyze the tail behavior. We focus on a particular yet arbitrary flow i for
which we assume ρi < γi to ensure stability.

We first introduce some additional notation. For any subset E ⊆ {1, . . . , N}, define

γiE(δ) = (1 − δ)γiE = (1 − δ)ρi for all i ∈ SE,

and

γiE(δ) = φiRE(δ) for all i /∈ SE,

with

RE(δ) = 1∑
j /∈SE φj

(
1 −

∑
j∈SE

γjE(δ)

)
= 1∑

j /∈SE φj

(
1 − (1 − δ)

∑
j∈SE

ρj

)
.

Note that
∑N

i=1 γiE(δ) = 1 for all values of δ (unless E = ∅).
We now state some preliminary results which will play a crucial role in deriving

the bounds.

Lemma 4.2. Let E, S, T ⊆ {1, . . . , N} be sets with SE ⊆ S, S ∩ T = ∅.
Then∑
j∈S

Bj (r, t) �
∑
j∈S

inf
r�s�t

{
Aj(r, s)+ γjE(δ)∑

k/∈T γkE(δ)

[
t − s −

∑
k∈T

Bk(s, t)

]}
,

for all δ � δ0 for some δ0 < 0.

The proof of the above lemma may be found in [13].

Lemma 4.3. Let E, S ⊆ {1, . . . , N} be sets with E = ∅, SE ⊆ S.
Then ∑

j∈S
Bj (r, t) �

∑
j∈S

inf
r�s�t

{
Aj(r, s) + γjE(δ)(t − s)

}
,

for all δ � δ0 for some δ0 < 0.

Proof. The statement follows immediately from lemma 4.2 when taking T = ∅ so
that

∑
k∈T Bk(s, t) = 0 and

∑
k/∈T γkE(δ) = ∑N

k=1 γkE(δ) = 1. �
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Lemma 4.4. Let E, S ⊆ {1, . . . , N} be sets with E = ∅, SE ⊆ S.
Then ∑

j∈S
Vj(t) �

∑
j∈S

V
γjE(δ)

j (t),

for all δ � δ0 for some δ0 < 0.

Proof. Using the identity relation (1), lemma 4.3, and the assumption that Vj(0) = 0
for all j = 1, . . . , N ,∑

j∈S
Vj (t)=

∑
j∈S

[
Aj(0, t) − Bj(0, t)

]
�
∑
j∈S

[
Aj(0, t) − inf

0�s�t

{
Aj(0, s) + γjE(δ)(t − s)

}]
=
∑
j∈S

sup
0�s�t

{
Aj(s, t)− γjE(δ)(t − s)

} =
∑
j∈S

V
γjE(δ)

j (t). �

We first present a lower bound for the workload distribution of flow i. For any
c � 0, define Zc

j (r) := sups�r{c(s − r) − Aj(r, s)}. For c < ρj , let Zc
j be a stochastic

variable with as distribution the distribution of Zc
j (r) (which in fact does not depend on r

because the process Aj(s, t) is stationary).

Lemma 4.5 (Lower bound). For δ > 0 sufficiently small,

P{Vi > x} � P

{
Vγi(δ)

i −
∑
j =i

Z
ρj (1−δ)
j > x

}
. (7)

Proof. See appendix B. �

We now provide an upper bound for the workload distribution of flow i. For any
subset E ⊆ {1, . . . , N}, define ψiE = φi/

∑
j /∈SE φj .

Lemma 4.6 (Upper bound). For δ > 0 sufficiently small,

P{Vi > x} � P

{
VγiE(−δ)
i + ψiE

∑
j∈SE

V
ρj (1+δ)
j > x for all sets E � i with γiE > ρi

}
.

(8)

Proof. See appendix C. �

4.3. Asymptotic behavior

We now use the bounds from the previous subsection to determine the tail distribution of
the workload. As before, we consider a specific flow i which satisfies properties 3.1–3.3,
but now for c = γi .
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We make the following assumption.

Assumption 4.1. At least one of the following two conditions holds:

(i) ρi < φi ;

(ii) for all sets E � i with γiE∪{i} � ρi , for any δ > 0,

∏
j∈E

P
{
V
ρj (1+δ)
j > x

} = o
(
P
{
Vγi
i > x

})
as x → ∞.

In addition, flow i satisfies the following property for c = γi .

Property 4.1. P{Vc
i > x} is dominatedly varying (see [23]), i.e.,

lim sup
x→∞

P{Vc
i > ηx}

P{Vc
i > x} = Hc

i (η) < ∞, for some real η ∈ (0, 1)

(which implies the property holds for all η > 0).

As will be formally shown below, the above assumption ensures that flow i is not
significantly affected by flows with ‘heavier’-tailed traffic characteristics. Specifically,
the assumption implies that temporary instability caused by activity of other flows does
not substantially influence the workload of flow i compared to the contribution of flow i

itself. Condition (i), in fact, guarantees unconditional stability of flow i, regardless of
the activity of the other flows. Note that the inequality γiE∪{i} � ρi implies that flow i

would be pushed into instability if the flows j ∈ E continuously claimed their full share
of the link rate according to the assigned weights φj . Thus, condition (ii) guarantees
that only sets of flows with ‘combined lighter tails’, could potentially drive flow i into
instability. Or equivalently, sets of flows with ‘combined heavier tails’ cannot drive
flow i into instability.

According to theorems 2.1 and 2.4, if Srj (·) ∈ IR, then for c > ρj , P{Vc
j > x}

∼ Kc
jP{Srj > x} for some constant 0<Kc

j <∞. If Sj (·) is light-tailed, i.e., P{Sj > x}
= o(e−κ1x) for some κ1 > 0, then for c > ρj , P{Vc

j > x} = o(e−κ2x) for some κ2 > 0.
Thus, a sufficient requirement for condition (ii) of assumption 4.1 to hold is Sri (·) ∈ IR,
and for all sets E ⊆ {1, . . . , N} with γiE∪{i} � ρi , either Sj (·) is light-tailed for some
j ∈ E, or Srj (·) ∈ IR for all j ∈ E and

∏
j∈E P{Srj > x} = o(P{Sri > x}) as x → ∞.

Now consider the special case where the flows j ∈ R have regularly varying tails
of index −νj , whereas the flows j /∈ R have exponential tails. In that case, for flows
i ∈ R, the sufficient condition indicated above may be expressed as follows: for all sets
E ⊆ R with γiE∪{i} � ρi ,

∑
j∈E(νj − 1) > νi − 1.

We now give the main result of this section.
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Theorem 4.1. Consider a flow i which satisfies properties 3.1–3.3 for c = γi . If as-
sumption 4.1 holds, then

P{Vi > x} ∼ P
{
Vγi
i > x

}
.

Before giving the formal proof of theorem 4.1, we first provide an intuitive expla-
nation. Theorem 4.1 states that the workload of an individual flow i (with long-tailed
traffic characteristics) is asymptotically equivalent to that in an isolated system. In the
isolated system, flow i is served at a constant rate γi , which is equal to the average rate
that flow i would receive if it continuously claimed its full share of the link rate. The
result suggests that the most likely way for flow i to build a large queue is that the flow
itself generates a large burst, or experiences a long on-period, while all other flows show
roughly average behavior. During that period, flow i then receives service approximately
at rate γi .

Thus, asymptotically, the workload of flow i is only affected by the traffic char-
acteristics of the other flows through their average rates. In particular, flow i is largely
insensitive to extreme activity of other flows, even when those have ‘heavier’-tailed traf-
fic characteristics.

We now briefly discuss the significance of assumption 4.1. As mentioned earlier,
the assumption ensures that flow i is not significantly affected by flows with ‘heavier’-
tailed traffic characteristics. If assumption 4.1 does not hold, then there exists some
set E with heavier combined tails than flow i and γiE∪{i} � ρi . We conjecture that the
tail distribution of Vi in that case is determined by the set E∗ with the ‘heaviest’ tails,
i.e., ∏

j∈E
P
{
Srj > x

} = o

(∏
j∈E∗

P
{
Srj > x

})
for all E = E∗ with γiE∪{i} � ρi.

The tail distribution of Vi is then heavier than when flow i were served in isolation at a
stable rate. The most likely way for flow i to build a large queue is that the flows j ∈ E∗
generate large bursts, or experience long on-periods, while the other flows, including
flow i itself, show roughly average behavior. Flow i then receives service approximately
at rate γiE∗ � ρi , so that the queue will roughly grow at rate ρi − γiE∗ for a substantial
period of time. In the next section we investigate this scenario in detail for the case
where the ‘dominant’ set E∗ consists of just a single flow k∗.

For theorem 4.1 to hold in case of fluid input, we need besides stability, i.e.,
ρi < γi , also ri > γi as implicitly required in properties 3.1–3.3. If assumption 4.1
does not hold, then we expect the tail behavior of Vi in case ri < γi is still determined
by the set E∗ as described above. We will prove this in the next section for the case
where the ‘dominant’ set E∗ consists of just a single flow. If assumption 4.1 does hold,
however, then we conjecture that, possibly under some additional conditions, the tail be-
havior is determined by the set E∗ with the heaviest tails for which either (i) γiE∗ < ρi ,
if i /∈ E∗ or (ii) γiE∗ < ri , if i ∈ E∗. The tail distribution of Vi is then lighter than when
flow i were served in isolation. The most likely way for flow i to build a large queue is
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still that the flows j ∈ E∗ generate large bursts or experience long on-periods, while the
other flows show roughly average behavior.

We now give the proof of theorem 4.1.

Proof of theorem 4.1 (Lower bound). From lemma 4.5, using independence, for δ > 0
sufficiently small and any y,

P{Vi > x} � P

{
Vγi(δ)

i > x + y,
∑
j =i

Z
ρj (1−δ)
j � y

}

= P
{
Vγi(δ)

i > x + y
}
P

{∑
j =i

Z
ρj (1−δ)
j � y

}
.

Thus

P{Vi > x}
P{Vγi

i > x} � P{Vγi(δ)

i > x + y}
P{Vγi

i > x + y}
P{Vγi

i > x + y}
P{Vγi

i > x} P

{∑
j =i

Z
ρj (1−δ)
j � y

}
.

Using the fact that P{Vγi
i > x} satisfies properties 3.1 and 3.2,

lim inf
x→∞

P{Vi > x}
P{Vγi

i > x} � F
γi
i

(
γi(δ)− γi

)
P

{∑
j =i

Z
ρj (1−δ)
j � y

}
.

Letting y → ∞, and then δ ↓ 0, we have

lim inf
x→∞

P{Vi > x}
P{Vγi

i > x} � 1.

(Upper bound). We first consider the case that condition (i) of assumption 4.1
applies.

From property (4) and lemma 4.6, taking E = {i}, using independence, for δ > 0
sufficiently small and any y,

P{Vi > x} � P

{
Vφi
i > x, Vγi(−δ)

i +
∑
j∈Si

V
ρj (1+δ)
j > x

}

� P

{
Vφi
i > x,Vγi (−δ)

i > x − y or
∑
j∈Si

V
ρj (1+δ)
j > y

}

� P
{
Vγi(−δ)
i > x − y

}+ P

{
Vφi
i > x,

∑
j∈Si

V
ρj (1+δ)
j > y

}

= P
{
Vγi(−δ)
i > x − y

}+ P
{
Vφi
i > x

}
P

{∑
j∈Si

V
ρj (1+δ)
j > y

}
.
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Thus

P{Vi > x}
P{Vγi

i > x} � P{Vγi(−δ)
i > x − y}

P{Vγi
i > x − y}

P{Vγi
i > x − y}

P{Vγi
i > x}

+ P{Vφi
i > x}

P{Vγi
i > x}P

{∑
j∈Si

V
ρj (1+δ)
j > y

}
.

Using the fact that P{Vγi
i > x} satisfies properties 3.1 and 3.3,

lim sup
x→∞

P{Vi > x}
P{Vγi

i > x} � G
γi
i

(
γi − γi(−δ)

)+G
γi
i (γi − φi)P

{∑
j∈Si

V
ρj (1+δ)
j > y

}
.

Letting y → ∞, and then δ ↓ 0, we obtain

lim sup
x→∞

P{Vi > x}
P{Vγi

i > x} � 1.

We now consider the case that condition (ii) of assumption 4.1 applies.
Let us index the sets E � i for which γiE > ρi as E1, . . . , EM . Note that M � 1 as

γi > ρi . From lemma 4.6, using independence, for δ > 0 sufficiently small and any y,

P{Vi > x} � P

{
VγiE(−δ)
i +

∑
j∈SE

V
ρj (1+δ)
j > x for all sets E � i with γiE > ρi

}

= P

{
Vγi(−δ)
i +

∑
j∈Si

V
ρj (1+δ)
j > x,

VγiEm(−δ)
i +

∑
j∈SEm

V
ρj (1+δ)
j > x ∀m = 1, . . . ,M

}

� P

{
Vγi(−δ)
i > x − y or

∑
j∈Si

V
ρj (1+δ)
j > y, VγiEm(−δ)

i >
x

N

or ∃jm ∈ SEm : V
ρjm (1+δ)
jm

>
x

N
∀m = 1, . . . ,M

}

� P
{
Vγi(−δ)
i > x − y

}+ P

{∑
j∈Si

V
ρj (1+δ)
j > y, ∃m: VγiEm(−δ)

i >
x

N

}

+ P

{
∃jm ∈ SEm : V

ρjm (1+δ)
jm

>
x

N
∀m = 1, . . . ,M

}

� P
{
Vγi(−δ)
i > x − y

}+ P

{∑
j∈Si

V
ρj (1+δ)
j > y

} M∑
m=1

P
{
VγiEm(−δ)
i > x/N

}

+
∑

j1∈SE1 ,...,jM∈SEM

∏
j∈{j1,...,jM }

P

{
V
ρj (1+δ)
j >

x

N

}
.
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Thus

P{Vi > x}
P{Vγi

i > x} � P{Vγi(−δ)
i > x − y}

P{Vγi
i > x − y}

P{Vγi
i > x − y}

P{Vγi
i > x}

+P

{∑
j∈Si

V
ρj (1+δ)
j > y

} M∑
m=1

P{VγiEm(−δ)
i > x/N}

P{Vγi
i > x/N}

P{Vγi
i > x/N}

P{Vγi
i > x}

+
∑

j1∈SE1 ,...,jM∈SEM

∏
j∈{j1,...,jM } P{Vρj (1+δ)

j > x/N}
P{Vγi

i > x/N}
P{Vγi

i > x/N}
P{Vγi

i > x} .

Using the fact that P{Vγi
i > x} satisfies properties 3.1, 3.3, and 4.1,

lim sup
x→∞

P{Vi > x}
P{Vγi

i > x} �G
γi
i

(
γi − γi(−δ)

)
+H

γi
i

(
1

N

)
P

{∑
j∈Si

V
ρj (1+δ)
j > y

} M∑
m=1

G
γi
i

(
γi − γiEm(−δ)

)

+H
γi
i

(
1

N

) ∑
j1∈SE1 ,...,jM∈SEM

lim sup
x→∞

∏
j∈{j1,...,jM } P{Vρj (1+δ)

j > x}
P{Vγi

i > x} .

Now consider a set {j1, . . . , jM} with j1 ∈ SE1, . . . , jM ∈ SEM . By definition,
j1 /∈ E1, . . . , jM /∈ EM , so that {i, j1, . . . , jM} = E1, . . . , EM, {i}. Consequently,
γi{i,j1,...,jM } � ρi . Condition (ii) of assumption 4.1 then implies that

lim sup
x→∞

∏
j∈{j1,...,jM } P{Vρj (1+δ)

j > x}
P{Vγi

i > x} = 0.

Hence,

lim sup
x→∞

P{Vi > x}
P{Vγi

i > x} �G
γi
i

(
γi − γi(−δ)

)
+H

γi
i

(
1

N

)
P

{∑
j∈Si

V
ρj (1+δ)
j > y

} M∑
m=1

G
γi
i

(
γi − γiEm(−δ)

)
.

Letting y → ∞, and then δ ↓ 0, we obtain

lim sup
x→∞

P{Vi > x}
P{Vγi

i > x} � 1. �

5. Induced burstiness

As in the previous sections, we focus on a particular flow i for which we assume ρi < γi
to ensure stability. However, now we consider the case that assumption 4.1 does not
hold. Instead, we assume there exists a ‘dominant’ set E∗ consisting of just a single
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flow k∗. Thus, γik∗ < ρi , which in fact implies that γjk∗ < ρj for all j > i. In addition,
we assume that γjk∗ > ρj for all j < i, so that Sk∗ = {1, . . . , i − 1} \ {k∗}.

5.1. Bounds

We start with deriving bounds for the workload distribution which we will use in the
next subsection to analyze the tail behavior. We first introduce some additional notation.
Denote

ψi := φi∑N
j=i φj

, χi := φi

φk∗ +∑N
j=i φj

, ξi := 1 −
i−1∑

j=1,j =k∗
ρj − ρi

ψi

.

It is easily verified from the stability condition ρi < γi that

ρi < ψi

(
1 −

i−1∑
j=1

ρj

)
,

so that ξi > ρk∗ . Define

Qδ
k∗(t) := sup

0�s�t

{
ψi

[
B
γk∗ (δ)
k∗ (s, t)− γk∗(δ)(t − s)

]+ (
ρi(1 − δ)− γik∗(δ)

)
(t − s)

}
, (9)

with Bγk∗ (δ)
k (s, t) as in (2).

As Sk∗ = {1, . . . , i − 1} \ {k∗},

γik∗(δ)= φi

φk∗ +∑N
j=i φj

(
1 − (1 − δ)

i−1∑
j=1,j =k∗

ρj

)

=ψi

(
1 − φk∗

φk∗ +∑N
j=i φj

)(
1 − (1 − δ)

i−1∑
j=1,j =k∗

ρj

)

=ψi

(
1 − γk∗(δ)− (1 − δ)

i−1∑
j=1,j =k∗

ρj

)
.

Thus, (9) may be rewritten as

Qδ
k∗(t) = ψi sup

0�s�t

{
B
γk∗ (δ)
k∗ (s, t)− c(δ)(t − s)

}
, (10)

with

c(δ) := γk∗(δ)+ γik∗(δ)− ρi(1 − δ)

ψi

= (1 − δ)ξi + δ.

For δ not too small, let Qδ
k∗ be a stochastic variable having the limiting distribution of

Qδ
k∗(t) for t → ∞.

We first present a lower bound for the workload distribution of flow i.
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Lemma 5.1 (Lower bound). For δ > 0 sufficiently small,

P{Vi > x} � P

{
Qδ
k∗ −

∑
j =k∗

Z
ρj (1−δ)
j > x

}
. (11)

The proof of the above lemma may be found in [13].
We now provide an upper bound for the workload distribution of flow i. Define

s∗ := sup{s � t|V γk∗ (−δ)
k∗ (s) = 0} (or, equivalently, s∗ := arg sup0�s�t{Ak∗(s, t) −

γk∗(−δ)(t − s)}). For all j = 1, . . . , N , denote

Wδ
j (t) := V

ρj (1+δ)
j (t)+ φk∗∑N

j=i φj
V
ρj (1+δ)
j (s∗).

For δ > 0, let Wδ
j be a stochastic variable with the limiting distribution of Wδ

j (t) for
t → ∞.

Lemma 5.2 (Upper bound). For δ > 0 sufficiently small,

P{Vi > x} � P

{
Q−δ
k∗ + Vρi (1+δ)

i + χi

i−1∑
j=1,j =k∗

Wδ
j > x

}
. (12)

The proof of the above lemma may be found in [13].

5.2. Asymptotic behavior

We now use the bounds from the previous subsection to determine the tail distribu-
tion of the workload. We first prove an auxiliary lemma. For conciseness, denote
Pr
k∗ := (Pγk∗

k∗ )r , Qk∗ := Q0
k∗ .

Lemma 5.3. If Srk∗(·) ∈ IR, Uk∗(·) is an exponential distribution, and rk∗ > γk∗ in case
of fluid input, then

P{Qk∗ > x} ∼ γk∗ − ρk∗

γk∗

ρk∗

ξi − ρk∗
P

{
Pr
k∗ >

x

ρi − γik∗

}
, (13)

with P{Pr
k∗ > x/(ρi − γik∗)} as in theorems 2.3 and 2.6, respectively.

Proof. Notice from (10) that, up to a multiplicative factor ψi , Qδ
k∗(t) represents the

workload at time t in a queue with service rate c(δ) fed by the departure process of a
queue of service rate γk∗(δ) fed by flow k∗. The departure process of the latter queue is
an on–off process with as on- and off-periods the busy and idle periods associated with
the workload process V γk∗ (δ)

k∗ (t). During the on-periods, traffic is generated at constant
rate γk∗(δ) (for δ sufficiently small in case of fluid input so that γk∗(δ) < rk∗). The
fraction of off-time is 1 − ρk∗/γk∗(δ). The on- and off-periods are independent because
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Uk∗(·) is an exponential distribution. As in the proof of theorem 2.6, it may be shown
that Srk∗(·) ∈ IR implies P r

k∗(·) ∈ IR. Hence, from theorem 2.4,

P
{
Qδ
k∗ > x

} ∼ γk∗(δ)− ρk∗

γk∗(δ)

ρk∗

(1 − δ)ξi + δ − ρk∗
P

{
Pr
k∗ >

x

ρi(1 − δ)− γik∗(δ)

}
, (14)

and, in particular, (13) follows. �

In accordance with the discussion in the previous section, we make the following
assumption.

Assumption 5.1. In addition to Sk∗ = {1, . . . , i − 1} \ {k∗}, each of the following two
conditions holds:

(i) P{Sri > x} = o(P{Srk∗ > x}) as x → ∞;

(ii) For all sets E � i, E = {k∗}, with γiE∪{i} � ρi , for any δ > 0,∏
j∈E

P
{
V
ρj (1+δ)
j > x

} = o
(
P{Qk∗ > x}) as x → ∞.

As indicated earlier, if Srj (·) ∈ IR, then according to theorems 2.1 and 2.4,
for c > ρj , P{Vc

j > x} ∼ Kc
jP{Srj > x} for some constant 0 < Kc

j < ∞. If Sj (·) is
light-tailed, i.e., P{Sj > x} = o(e−κ1x) for some κ1 > 0, then for c > ρj ,
P{Vc

j > x} = o(e−κ2x) for some κ2 > 0. Also, according to theorems 2.3 and 2.6,
if Srk∗(·) ∈ IR, then P{Qk∗ > x} ∼ KP{Srk∗ > x} for some constant K > 0. Thus,
a sufficient requirement for condition (ii) of assumption 5.1 to hold is Srk∗(·) ∈ IR, and
for all sets E ⊆ {1, . . . , N}, E = {k∗}, with γiE∪{i} � ρi , either Sj (·) is light-tailed for
some j ∈ E, or Srj (·) ∈ IR for all j ∈ E and

∏
j∈E P{Srj > x} = o(P{Srk∗ > x})

as x → ∞.
Now consider the special case where for some setR ⊆ {1, . . . , N} the flows j ∈ R,

in particular flow k∗, have regularly varying tails with index −νj , whereas the flows
j /∈ R have exponential tails. In that case, the sufficient condition indicated above may
be expressed as follows: for all sets E ⊆ R with γiE∪{i} � ρi ,

∑
j∈E(νj − 1) > νk∗ − 1.

Condition (i) then reduces to i /∈ R or νi > νk∗ .
We now give the main result of this section.

Theorem 5.1. If Srk∗(·) ∈ IR, Uk∗(·) is an exponential distribution, and assumption 5.1
holds, then

P{Vi > x} ∼ P{Qk∗ > x}.

Before giving the formal proof of theorem 5.1, we first provide an intuitive inter-
pretation. As alluded to earlier, the result suggests that the most likely way for flow i to
build a large queue is that flow k∗ generates a large burst or experiences a long on-period,
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while the other flows, including flow i itself, show roughly average behavior. Specifi-
cally, when flow k∗ generates a large amount of traffic, so it becomes backlogged for a
long period of time, it receives service approximately at rate γk∗ . Thus it experiences a
busy period as if it were served at constant rate γk∗ .

During that congestion period, the flows j = k∗ receive service approximately at
rate γjk∗ , while they generate traffic at average rate ρj . Thus, the queue of flow j /∈
Sk∗ = {i, . . . , N}, in particular flow i, grows roughly at rate ρj − γjk∗ > 0.

By the time the long congestion period ends, the flows j � i have built large
queues, and then start to receive service approximately at rate

φj∑N
j=i φj

(
1 −

i−1∑
j=1,j =k∗

ρj

)
.

The queue of flow i then starts to drain roughly at rate ψi(1−∑i−1
j=1,j =k∗ ρj )−ρi = ψiξi ,

and is the first to empty among the flows j � i.
In conclusion, the queue of flow i grows at rate ρi − γik∗ when flow k∗ is back-

logged. When flow k∗ is not backlogged, the queue of flow i drains at rate ψiξi .
Thus, the queue of flow i behaves as that of a queue with service rate ψiξi fed

by an on–off process with as on- and off-periods the busy and idle periods of flow k∗
when served at constant rate γk∗ . During the on-periods, traffic is produced at rate ρi −
γik∗ +ψiξi = ψiγk∗ . This is reflected in theorem 5.1 if we use lemma 5.3 to interpret the
right-hand side.

In preparation for the proof of theorem 5.1, we first state an auxiliary lemma.

Lemma 5.4. If Srk∗(·) ∈ IR, and P{Sri > x} = o(P{Srk∗ > x}) as x → ∞, then for any
c > ρi , P{Vc

i > x} = o(P{Qk∗ > x}) as x → ∞.

Proof. For any ε > 0, construct the stochastic variable Sεi with distribution

P
{
Sεi > x

} = min
{
1,P{Si > x} + εP{Sk∗ > x}}.

Denote by V c,ε
i (t) the workload at time t in a queue with service rate c fed by flow i

where the stochastic variable Si in the arrival process is replaced by Sεi . For ε > 0
sufficiently small, let Vc,ε

i be a stochastic variable having the limiting distribution of
V
c,ε
i (t) for t → ∞. (Note that ESεi � ESi + εESk∗ , so that the queue is stable for ε > 0

sufficiently small.)
Clearly, Sεi is stochastically larger than Si , so that for ε > 0 sufficiently small,

P
{
Vc
i > x

}
� P

{
Vc,ε
i > x

}
. (15)

Also,

P
{(

Sεi
)r
> x

} ∼ ε
ESk∗

ESεi
P
{
Srk∗ > x

}
,
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which implies that P{(Sεi )r > x} ∈ IR. Hence, by theorems 2.1, 2.3, 2.4, 2.6, and
lemma 5.3,

lim sup
x→∞

P{Vc,ε
i > x}

P{Qk∗ > x} � εK, (16)

for some finite constant K independent of ε.
The lemma follows by combining (15) and (16) and letting ε ↓ 0. �

We now give the proof of theorem 5.1.

Proof of theorem 5.1. Using (13) and the fact that P r
k∗(·)∈IR (which implies P r

k∗(·)
∈ L), for any y,

lim
x→∞

P{Qk∗ > x − y}
P{Qk∗ > x} = 1, (17)

and

lim sup
x→∞

P{Qk∗ > x/N}
P{Qk∗ > x} = F < ∞. (18)

Also using (14),

lim
x→∞

P{Qδ
k∗ > x}

P{Qk∗ > x} = G(δ), (19)

with limδ→0 G(δ) = 1.
(Lower bound). From lemma 5.1, using independence, for δ > 0 sufficiently small

and any y,

P{Vi > x} � P

{
Qδ
k∗ > x + y,

∑
j =k∗

Z
ρj (1−δ)
j � y

}

= P
{
Qδ
k∗ > x + y

}
P

{∑
j =k∗

Z
ρj (1−δ)
j � y

}
.

Thus

P{Vi > x}
P{Qk∗ > x} � P{Qδ

k∗ > x + y}
P{Qk∗ > x + y}

P{Qk∗ > x + y}
P{Qk∗ > x} P

{∑
j =k∗

Z
ρj (1−δ)
j � y

}
.

Using (17), (19),

lim inf
x→∞

P{Vi > x}
P{Qk∗ > x} � G(δ)P

{∑
j =k∗

Z
ρj (1−δ)
j � y

}
.

Letting y → ∞, and then δ ↓ 0, we have

lim inf
x→∞

P{Vi > x}
P{Qk∗ > x} � 1.
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(Upper bound). Let us index the sets E � i for which γiE > ρi as E1, . . . , EM .
Note that M � 1 as γi > ρi . It is easily verified from the fact that Sk∗ = {1, . . . , i− 1} \
{k∗} that k∗ /∈ Em, k∗ ∈ SEm for all m = 1, . . . ,M.

From lemmas 4.6, 5.2, using independence, for δ > 0 sufficiently small and any y,

P{Vi > x} � P

{
Q−δ
k∗ + Vρi (1+δ)

i +
i−1∑

j=1,j =k∗
Wδ

j > x,

VγiE(−δ)
i +

∑
j∈SE

V
ρj (1+δ)
j > x for all sets E � i with γiE > ρi

}

= P

{
Q−δ
k∗ + Vρi (1+δ)

i +
i−1∑

j=1,j =k∗
Wδ

j > x,VγiEm (−δ)
i

+
∑
j∈SEm

V
ρj (1+δ)
j > x ∀m = 1, . . . ,M

}

= P

{
Q−δ
k∗ + Vρi(1+δ)

i +
i−1∑

j=1,j =k∗
Wδ

j > x,VγiEm (−δ)
i

+ Vρk∗ (1+δ)
k∗ +

∑
j∈SEm,j =k∗

V
ρj (1+δ)
j > x ∀m = 1, . . . ,M

}

� P

{
Q−δ
k∗ > x − y or Vρi(1+δ)

i +
i−1∑

j=1,j =k∗
Wδ

j > y,VγiEm(−δ)
i >

x

N

or Vρk∗ (1+δ)
k∗ >

x

N
or

∃jm ∈ SEm, jm = k∗: V
ρjm(1+δ)
jm

>
x

N
∀m = 1, . . . ,M

}

� P
{
Q−δ
k∗ > x − y

} + P

{
∃m: VγiEm(−δ)

i >
x

N

}

+ P

{
Vρk∗ (1+δ)
k∗ >

x

N
,Vρi(1+δ)

i +
i−1∑

j=1,j =k∗
Wδ

j > y

}

+ P

{
∃jm ∈ SEm, jm = k∗: V

ρjm (1+δ)
jm

>
x

N
∀m = 1, . . . ,M

}

� P
{
Q−δ
k∗ > x − y

} +
M∑
m=1

P

{
VγiEm(−δ)
i >

x

N

}

+ P

{
Vρk∗ (1+δ)
k∗ >

x

N

}
P

{
Vρi(1+δ)
i +

i−1∑
j=1,j =k∗

Wδ
j > y

}

+
∑

j1∈SE1\{k∗},...,jM∈SEM \{k∗}

∏
j∈{j1,...,jM }

P

{
V
ρj (1+δ)
j >

x

N

}
.
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Thus

P{Vi > x}
P{Qk∗ > x}

� P{Q−δ
k∗ > x − y}

P{Qk∗ > x − y}
P{Qk∗ > x − y}

P{Qk∗ > x} +
M∑
m=1

P{VγiEm(−δ)
i > x/N}

P{Qk∗ > x/N}
P{Qk∗ > x/N}

P{Qk∗ > x}

+ P{Vρk∗(1+δ)
k∗ > x/N}

P{Qk∗ > x/N}
P{Qk∗ > x/N}

P{Qk∗ > x} P

{
Vρi (1+δ)
i +

i−1∑
j=1,j =k∗

Wδ
j > y

}

+
∑

j1∈SE1\{k∗},...,jM∈SEM \{k∗}

∏
j∈{j1,...,jM } P{Vρj (1+δ)

j > x/N}
P{Qk∗ > x/N}

P{Qk∗ > x/N}
P{Qk∗ > x} .

According to theorems 2.3, 2.6, and lemma 5.3,

lim sup
x→∞

P{Vρk∗ (1+δ)
k∗ > x/N}

P{Qk∗ > x/N} = H(δ) < ∞.

Using (17)–(19), and lemma 5.4,

lim sup
x→∞

P{Vi > x}
P{Qk∗ > x}

� G(−δ)+ FH(δ)P

{
Vρi (1+δ)
i +

i−1∑
j=1,j =k∗

Wδ
j > y

}

+ F
∑

j1∈SE1\{k∗},...,jM∈SEM \{k∗}
lim sup
x→∞

∏
j∈{j1,...,jM } P{Vρj (1+δ)

j > x}
P{Qk∗ > x} .

Now consider a set {j1, . . . , jM} with j1 ∈ SE1 \{k∗}, . . . , jM ∈ SEM \{k∗}. By definition
j1 /∈ E1, . . . , jM /∈ EM , so that {i, j1, . . . , jM} = E1, . . . , EM, {k∗}. Consequently,
γi{i,j1,...,jM } � ρi . Condition (ii) of assumption 5.1 then implies that

lim sup
x→∞

∏
j∈{j1,...,jM } P{Vρj (1+δ)

j > x}
P{Qk∗ > x} = 0.

Hence,

lim sup
x→∞

P{Vi > x}
P{Qk∗ > x} � G(−δ)+ FH(δ) lim sup

x→∞
P

{
Vρi(1+δ)
i +

i−1∑
j=1,j =k∗

Wδ
j > y

}
.

Letting y → ∞, and then δ ↓ 0, we obtain

lim sup
x→∞

P{Vi > x}
P{Qk∗ > x} � 1. �
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6. Conclusion

We analyzed the queueing behavior of long-tailed traffic flows under the Generalized
Processor Sharing (GPS) discipline. We showed a sharp dichotomy in qualitative be-
havior, depending on the relative values of the weight parameters. For certain weight
combinations, an individual flow with long-tailed traffic characteristics is effectively
served at a constant rate. The effective service rate may be interpreted as the maximum
average traffic rate for the flow to be stable, which is only influenced by the traffic char-
acteristics of the other flows through their average rates. This indicates that GPS-based
scheduling algorithms offer a potential mechanism for obtaining substantial multiplex-
ing gains, while protecting indvidual flows. For other weight combinations however, a
flow may be strongly affected by the activity of ‘heavier’-tailed flows, and may inherit
their traffic characteristics, causing induced burstiness. The stark contrast in qualitative
behavior highlights the great significance of the weight parameters.

In the present paper we focused on the workload of an individual flow at a single
node. Some of the results may be extended to ‘bottle-neck nodes’ in feed-forward net-
works [41]. It would also be interesting to examine delays or loss probabilities in case
of finite buffers.

With class aggregation, the flows that we considered may actually be macro-flows,
each consisting of several micro-flows, which at a lower level may be served on a FCFS
basis, or also according to GPS. It would be interesting to investigate the behavior of the
micro-flows in such hierarchical situations.

In section 5 we found that a light-tailed flow whose weight is ‘too small’ could be
strongly affected by a heavy-tailed flow. The case of a light-tailed flow whose weight is
‘large enough’ to be protected is analyzed in [14,15].

A final issue concerns the behavior of an on–off flow whose peak rate ri is smaller
than the effective service rate γi . In that case, other flows too need to show anomalous
activity for the workload of flow i to grow, which means that the tail behavior may
become ‘less heavy-tailed’ or even light-tailed. This phenomenon may be viewed as
somewhat dual to the induced burstiness described above.
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Appendix A. Stability issues

We now identify which flows are stable and which ones are unstable. Flow i is
considered ‘stable’ if the mean service rate is ρi . For ease of presentation, we assume
the flows are indexed such that

ρ1

φ1
� · · · � ρN

φN
.
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Define S∗ as the set of stable flows. Denote by γi the mean service rate for flow i

(assuming it exists).
We have γi � ρi for all i = 1, . . . , N , with equality for all i ∈ S∗. Also, if j /∈ S∗,

then γi/φi � γj/φj for all i = 1, . . . , N .
In particular, we have γi/φi = γj/φj for any pair of flows i, j /∈ S∗, so γi = φiR

for all i /∈ S∗ for some R � 1. To determine R, observe that
∑N

i=1 γi = 1 if S∗ =
{1, . . . , N}, which gives

R = 1∑
j /∈S∗ φj

(
1 −

∑
j∈S∗

ρj

)
.

We first prove a lemma that characterizes the structure of the set S∗.

Lemma A.1. With the above ordering of the flows, the set S∗ is of the form {1, . . . , K}
for some K.

Proof. Suppose not, i.e., there are flows i and j , with i < j , i /∈ S∗, and j ∈ S∗.
Then we have γi < ρi, γj = ρj , and γi/φi � γj/φj . Thus, ρi/φi > ρj/φj , which would
contradict the ordering of the flows. �

We now prove an auxiliary lemma.

Lemma A.2. With the above ordering of the flows, if

ρk >
φk∑N
j=k φj

(
1 −

k−1∑
j=1

ρj

)
, (A.1)

then

ρk+1 >
φk+1∑N
j=k+1 φj

(
1 −

k∑
j=1

ρj

)
. (A.2)

Proof. First observe the equivalence relation

ρk >
φk∑N
j=k φj

(
1 −

k−1∑
j=1

ρj

)
⇐⇒ ρk >

φk∑N
j=k+1 φj

(
1 −

k∑
j=1

ρj

)
. (A.3)

The proof then immediately follows from the fact that ρk/φk � ρk+1/φk+1. �

The next lemma now identifies the set of stable flows.
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Lemma 4.1. With the above ordering of the flows, the set of stable flows is S∗ =
{1, . . . , K∗}, with

K∗ = max
k=1,...,N

{
k:

ρk

φk
�

1 −∑k−1
j=1 ρj∑N

j=k φj

}
.

Proof. By lemma A.1, the set S∗ is of the form {1, . . . , L} for some L, so it suffices to
show that L = K∗. First observe that

ρL+1 > γL+1 = φL+1∑N
j=L+1 φj

(
1 −

L∑
j=1

ρj

)
.

By lemma A.2 and the definition of K∗, this implies L � K∗. We also have γL = ρL
and γL/φL � γL+1/φL+1. Thus,

ρL � φL

φL+1
γL+1 = φL∑N

j=L+1 φj

(
1 −

L∑
j=1

ρj

)
,

which is equivalent to

ρL � φL∑N
j=L φj

(
1 −

L−1∑
j=1

ρj

)
.

By lemma A.2 and the definition of K∗, this implies L � K∗. �

Appendix B. Proof of lemma 4.5

Lemma 4.5 (Lower bound). For δ > 0 sufficiently small,

P{Vi > x} � P

{
Vγi(δ)

i −
∑
j =i

Z
ρj (1−δ)
j > x

}
.

Proof. From (1),

Vi(t) � Ai(r, t) − Bi(r, t) for all 0 � r � t . (B.1)

Note that
∑N

j=1 Bj(r, t) � t − r, so that

Bi(r, t) � t − r −
∑
j =i

Bj (r, t). (B.2)

By definition, i /∈ Si . Hence, from lemma 4.3, for any δ � 0,∑
j =i

Bj (r, t) �
∑
j =i

inf
r�s�t

{
Aj(r, s)+ γji(δ)(t − s)

}
. (B.3)
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Combining (B.1)–(B.3), for any δ � 0 and 0 � r � t ,

Vi(t)�Ai(r, t)− (t − r)+
∑
j =i

inf
r�s�t

{
Aj(r, s) + γji(δ)(t − s)

}
=Ai(r, t)− γi(δ)(t − r)−

∑
j =i

γji(δ)(t − r)

+
∑
j =i

inf
r�s�t

{
Aj(r, s)+ γji(δ)(t − s)

}
�Ai(r, t)− γi(δ)(t − r)+

∑
j =i

inf
r�s�t

{
Aj(r, s)− γji(δ)(s − r)

}
=Ai(r, t)− γi(δ)(t − r)−

∑
j =i

sup
r�s�t

{
γji(δ)(s − r)− Aj(r, s)

}
�Ai(r, t)− γi(δ)(t − r)−

∑
j =i

Z
γji (δ)

j (r). (B.4)

Define r∗ := arg sup0�r�t{Ai(r, t) − γi(δ)(t − r)}, so that V γi(δ)

i (t) = Ai(r
∗, t) −

γi(δ)(t − r∗). Taking r = r∗ in (B.4) then yields

Vi(t) � V
γi(δ)

i (t)−
∑
j =i

Z
γji (δ)

j (r∗).

By definition, γji(δ) = ρj (1 − δ) for all j ∈ Si . Also, γji(δ) > γji with γji(δ) ↓ γji
for δ ↓ 0 for all j /∈ Si . In particular, γi(δ) > ρi , because γi > ρi . Since γji < ρj for
j /∈ Si , j = i, we also have that for δ sufficiently small, γji(δ) < ρj(1 − δ) for j /∈ Si ,
j = i. Hence, for δ sufficiently small, γji(δ) � ρj (1 − δ) for all j = i, so that

Vi(t) � V
γi(δ)

i (t)−
∑
j =i

Z
ρj (1−δ)
j (r∗),

as Zc
j (r) is increasing in c.

Note that r∗, V γi(δ)

i (t) only depend on Ai(s, t), not on Aj(s, t), j = i, and are thus

independent of Z
ρj (1−δ)
j (r∗). Hence, for δ > 0 sufficiently small,

P
{
Vi(t) > x | r∗}� P

{
V
γi(δ)

i (t)−
∑
j =i

Z
ρj (1−δ)
j (r∗) > x | r∗

}

= P

{
V
γi(δ)

i (t)−
∑
j =i

Z
ρj (1−δ)
j > x | r∗

}
.

Thus, in the stationary regime the stated lower bound holds for δ > 0 sufficiently
small. �
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Appendix C. Proof of lemma 4.6

Lemma 4.6 (Upper bound). For δ > 0 sufficiently small,

P{Vi > x} � P

{
VγiE(−δ)
i + ψiE

∑
j∈SE

V
ρj (1+δ)
j > x for all sets E � i with γiE > ρi

}
.

Proof. Define r∗ := sup{r � t | Vi(r) = 0}. Then Vi(r∗) = 0, so from (1),

Vi(t) � Ai(r
∗, t)− Bi(r

∗, t). (C.1)

Also, Vi(r) > 0 for all r ∈ (r∗, t], i.e., flow i is continuously backlogged during the
interval (r∗, t]. Hence, by definition of the GPS discipline,

Bi(r
∗, t) � φi

φj
Bj (r

∗, t)

for all j = 1, . . . , N , and

N∑
j=1

Bj(r
∗, t) = t − r∗.

Thus, for any subset S ⊆ {1, . . . , N},

Bi(r
∗, t) � φi∑

j /∈S φj

∑
j /∈S

Bj (r
∗, t), (C.2)

and ∑
j /∈S

Bj (r
∗, t) = t − r∗ −

∑
j∈S

Bj (r
∗, t). (C.3)

Substituting (C.3) into (C.2), using (1),

Bi(r
∗, t)� φi∑

j /∈S φj

[
t − r∗ −

∑
j∈S

Bj (r
∗, t)

]

= φi∑
j /∈S φj

[
t − r∗ −

∑
j∈S

[
Vj(r

∗)+ Aj(r
∗, t)− Vj(t)

]]

� φi∑
j /∈S φj

[
t − r∗ −

∑
j∈S

[
Vj(r

∗)+ Aj(r
∗, t)

]]
.

In particular, for any subset E ⊆ {1, . . . , N}, δ > 0, using lemma 4.4,

Bi(r
∗, t) � ψiE

[
t − r∗ −

∑
j∈SE

[
V
ρj (1+δ)
j (r∗)+ Aj(r

∗, t)
]]
. (C.4)
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Substituting (C.4) into (C.1),

Vi(t)�Ai(r
∗, t)− ψiE

[
t − r∗ −

∑
j∈SE

[
V
ρj (1+δ)
j (r∗)+ Aj(r

∗, t)
]]

=Ai(r
∗, t)− ψiE

(
1 −

∑
j∈SE

ρj (1 + δ)

)
(t − r∗)

+ ψiE

[∑
j∈SE

[
V
ρj (1+δ)
j (r∗)+ Aj(r

∗, t)
]−

∑
j∈SE

ρj (1 + δ)(t − r∗)
]

=Ai(r
∗, t)− γiE(−δ)(t − r∗)

+ ψiE

∑
j∈SE

[
V
ρj (1+δ)
j (r∗)+ Aj(r

∗, t)− ρj (1 + δ)(t − r∗)
]

�V
γiE(−δ)
i (t)+ ψiE

∑
j∈SE

V
ρj (1+δ)
j (t).

From the definition it is easily seen that for δ > 0, γiE(−δ) < γiE with γiE(δ) ↑ γiE for
δ ↓ 0. Since γiE > ρi , we have that γiE(−δ) > ρi for δ sufficiently small, and hence
VγiE(−δ)
i is well-defined.

Thus, in the stationary regime the stated upper bound holds for δ > 0 sufficiently
small. �
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[10] S.C. Borst, O.J. Boxma and P.R. Jelenković, Induced burstiness in generalized processor sharing
queues with long-tailed traffic flows, in: Proc. of the 37th Annual Allerton Conf. on Communication,
Control, and Computing, 1999, pp. 316–325.
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